
Separation Anxiety

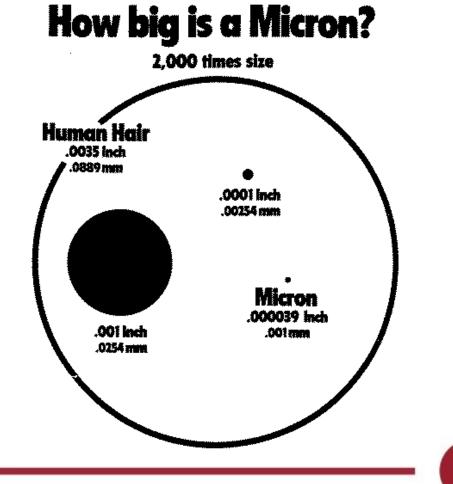
Observational Insights to Understanding Wine Filtration

Filtration Goals

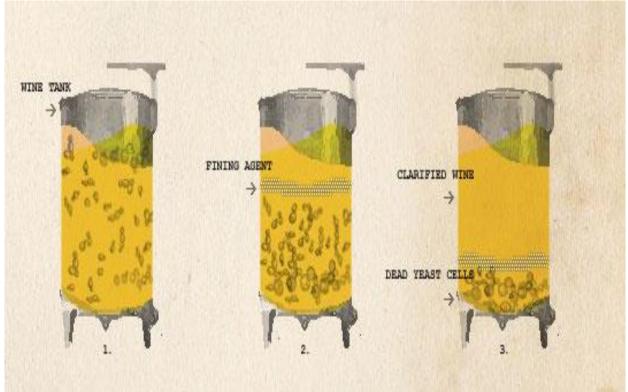
Scott Labs' Specialty

- Filtration sales since 1965
- 90% of our filters used in winemaking
- Global awareness of process
 - Fermentation
 - Packaging
 - Bottling
- Our concern is for the wine, not for the filter.

The Winemaking Process



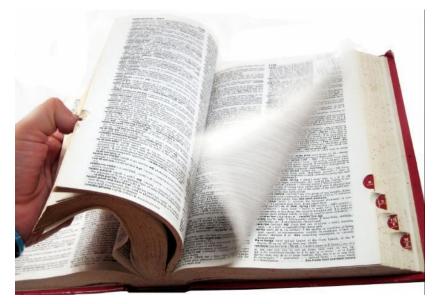
Micron or µm



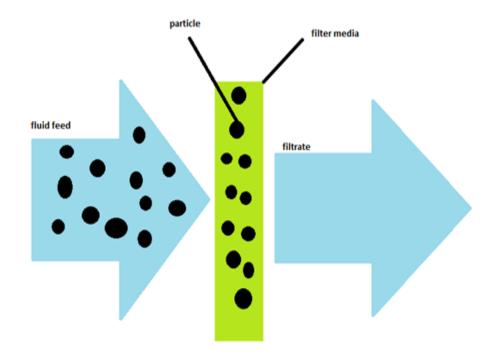
Suspended Solids

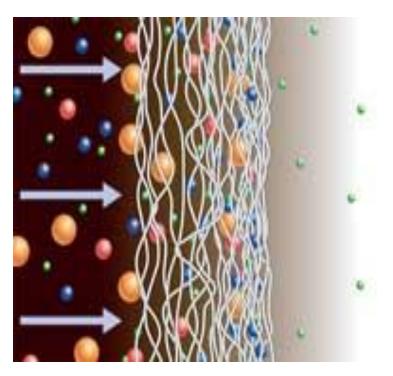
- Grape pulp 20 to 200 micron, gelatinous
- Tartrate crystals 5 to 500 micron, rigid
- Protein precipitates 2 to 20 micron, gelatinous
- Yeast 1 to 2 micron, gelatinous
- Bacteria 0.6 to 0.8 micron

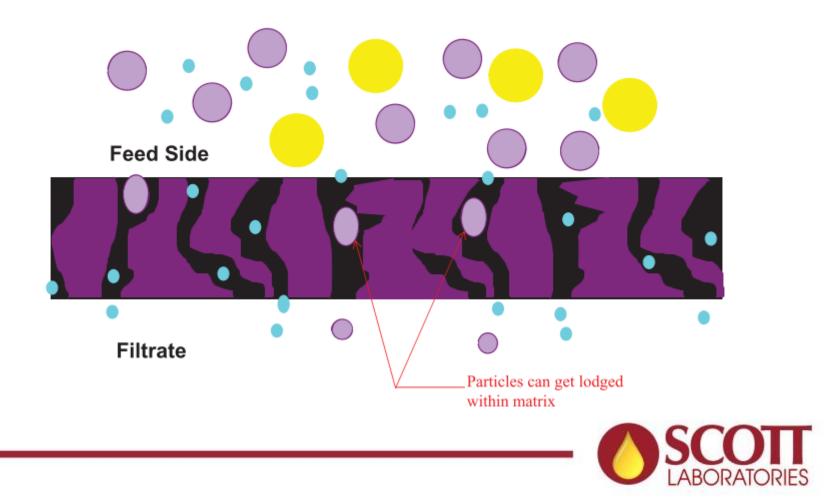
Clarification and Stabilization



Fining agents Temperature Gravity Racking

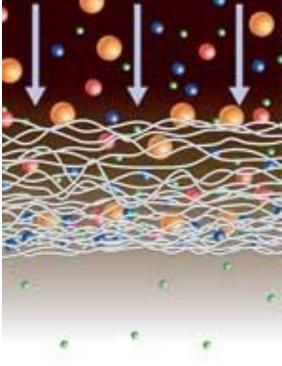

Glossary


- Depth and Membrane Filtration
- Absolute/Nominal
- Rough, Polish & Sterile
- Integrity testable

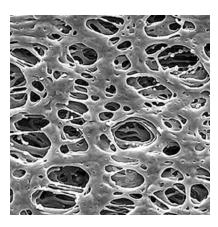

How does depth filtration work?

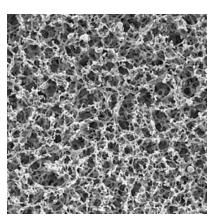
The labyrinth or tortuous path

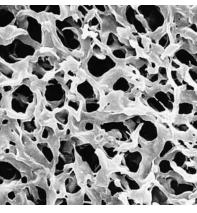
Depth Filtration

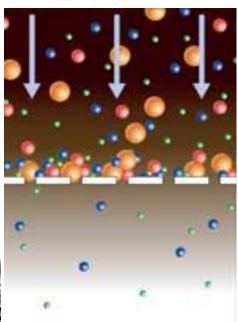

- Goal Removing Solids
- "Dirt holding capacity"

• Example: Filter pad media ; DE Filtration ; PP cartridges.

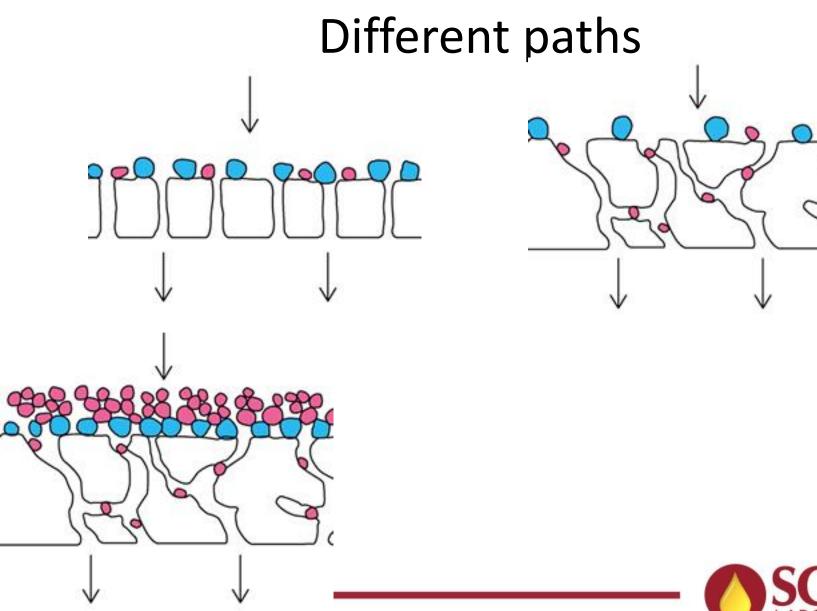


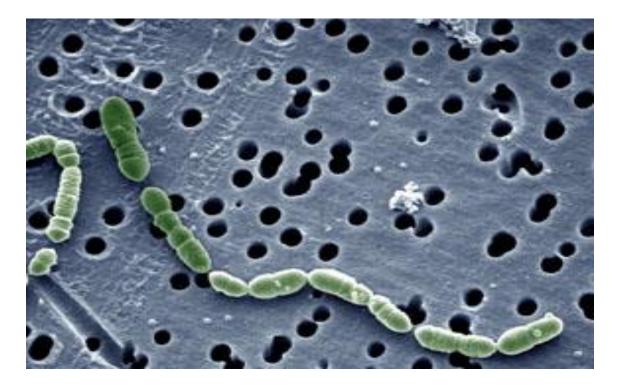




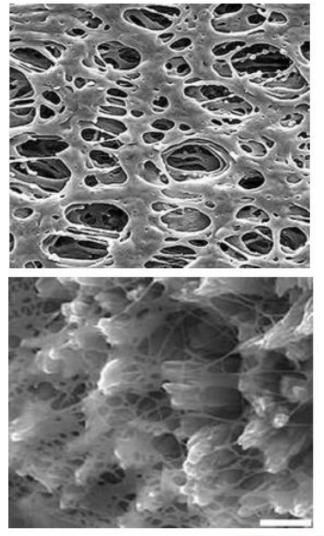

Membrane Filters

- High precision / accuracy
- Very low dirt holding capacity
- Examples: X-Flow, PES, PVDF, Glass matrix. Cellulose Acetate

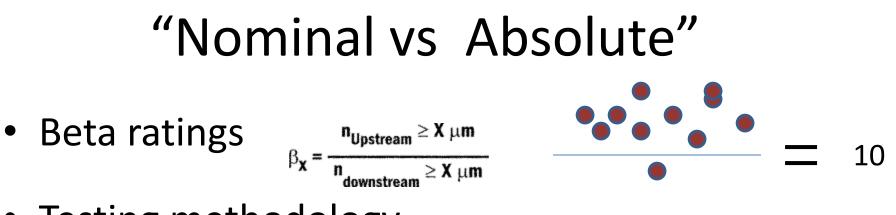




Oenococcus oeni on membrane surface



Glucans


Clean PES membrane

PES membrane fouled with glucans from *Botrytis*

tration

- Testing methodology
 - Typically spherical Glass or Nylon beads of a determined size passed under lab pressures
- Nominal = NOT absolute
- Absolute = maximum sized glass sphere (Absolutely nothing larger than the micron rating will pass through the membrane)

Titer Reduction Values

- Goal-based classification
- The best current method to distinguishing between similar but different filters
- 10⁶ vs 10⁹

Absolute/Nominal vs. Titer Reduction Value

- Two Filter Carts. Same grade, different Titer value:
 - Seitz XLII 0.45
 - **10**⁹ reduction of *Serratia marcescens*
 - 99.9999999% reduction
 - Brand X 0.45
 - **10**⁶ reduction of *S. marcescens*
 - 99.9999% reduction

Example #1

- Take an example of a wine exhibiting 100,000 cells/ml. Expect the following for the Seitz XLII 0.45:
- Reduction of 99.999999% at 10⁹ would yield 0.0001 cells per ml OR:
- .075 bugs per bottle

100,000 cells/ml x 0.000000001 0.0001 cell/ml 750 ml/bottle <u>x 0.0001 c/ml</u> 0.075 cells/bottle

Example #2

- Now try Brand X 0.45 with a titer reduction of 10⁶ at :
- Reduction of 99.9999% would yield 0.1 cells per ml
 OR:
- 75 bugs per bottle

100,000 cells/ml	750 ml/bottle	
<u>x 0.000001</u>	<u>x 0.1 c/ml</u>	
0.1 cell/ml	75 cells/bottle	

Is this an important difference ? Maybe.

Rough, Polish and Sterile

ROUGH	POLISH	STERILE/SANITIZING
Greater than 5 micron	Between 1-5 micron	Less than 1 micron
-Turbidity reduction -Excessively cloudy -Visible solids removal -Heavy Yeast removal	-Brightness -Final clarity -Yeast Population reduction	-Brilliance -Yeast "sterility" -Bacteria log reduction or "sterility"
DE: 1 Darcy Lenticular & Pads: K700 and up Cartridges: Polypropylene	DE: 0.3-0.4 Darcy Lenticular & Pads: K100 through K300 Cartridges: Glass or PP	DE: 0.1-0.2 Darcy Lenticular & Pads: EKS through KS80 Cartridges: PES
HUMAN HAIR: 55 µ Common PV	'PP: 25 μ Saccharomyces: 1-5	μ Denococcus: 0.5-1 μ

LABORATORIES

Filtration options

- Pads POWER
- Lenticular
- DE Filter
- X-Flow
- Cartridge

CAPITAL

LABOR

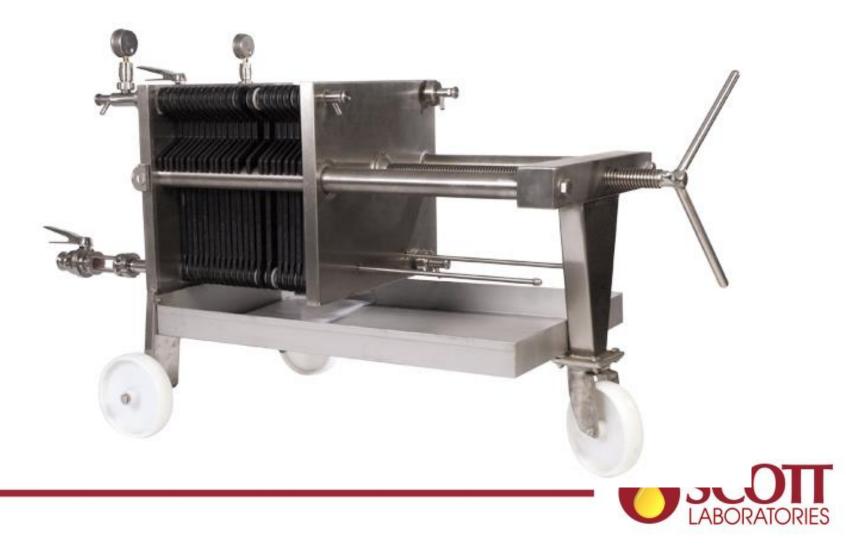
MEDIA COST

WINE LOSS

DISPOSAL

Filter Pads

- Preformed Depth Filters
- Rated from 0.2-55 microns



• Cellulose, DE, Perlite, Resin (or some combo)

- Pro: Pre-formed; repeatable; low capital costs
- Neutral: Medium media cost
- Con: Leakage loss; Disposal; Setup time; Space

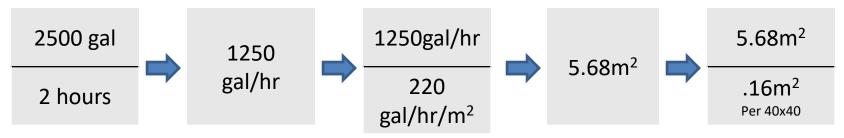


Plate & Frame Filter

Assumed Conditions* – Pad Media

- Average filter capacity period: 2 hours
- Optimal flow rate per m² pad media
 - Sterile: 125 gal/hr/m²
 - Polish and rough: 220 gal/hr/m²
- Example: 2500 gallons of red wine to polish

RECOMMENDED USE OF AT LEAST 36 40X40 FILTER SHEETS

*This reality does not exist

Filter pad regeneration

- 15 minute cold water forward flow
- 15 minute warm water (110F) forward flow
- 20-30 minutes sanitizing with 180F water
- Cool down the pads (slowly) after sanitizing otherwise microbes will breed overnight. (at 78 – 115F you can increase the population from 1 cell to 4 trillion overnight.)

Efficiency Tips - Pads

- Pre-rinse cycles
 - 2.0 pH with Citric and up to 1000ppm SO2
- DO NOT MIX GRADES WITHOUT CROSSOVER
- Replace "H" Gaskets every two years OR when hardening of rubber occurs
- Regeneration
 - Forward flushes of 120F
 - If Backflush, DO NOT exceed 7PSI
- Use 2-stage filtration when possible

Lenticular Filters

- THE SAME MEDIA AS PADS
- Modular format with 2 adapter types
- Pro: Quick setup/breakdown; repeatable; low capital costs; some backflushable; storable;
 VERY LOW LOSS
- Con: Higher upfront media costs; disposal

Lenticular Filter

Efficiency Tips - LENTICULAR

- Be flexible with housings
 - Size filtrations to minimize cost/filtration
- Regeneration
 - Forward flushes of 120F
 - If Backflush, DO NOT exceed 7PSI (use backflush plate for maximum support and efficiency)
- 12" vs 16" modules.
- Different height center posts, dual grade modules.

DE (or Perlite) Filtration

- Very high dirt holding capacity
- DE or Perlite Earth used
- Continuous addition of media creates capacity

- Pro: Low cost media; very high DHC
- Con: High capital costs; labor intensive; disposal; safety concerns

Assumed Conditions* – DE Media

- Average filter capacity period: 2 hours
- Setup/Breakdown is 1.5 hours
- Optimal flow rate per m² filter surface: 300 gal/hr/m²
- 8 hour work day, trained operator
- Example: Average lot size is 6,000 gallons

A 5m² filter should allow for 6,000 gallons to be filtered in 7 hours including setup/breakdown

*This reality does not exist

Cartridges

- Very low dirt holding capacity
- Very high precision and accuracy

- Often polymer based and sold for "T-style" housings in our industry (single open end)
- PRO: Standard for bottling; repeatable; regenerable; storable; high filterable surface
- CON: Poor for high solids; High media cost

Cartridge Filter & Housing

Integrity Testable

- IS THERE A HOLE IN MY FILTER!?
- Tests
 - Pressure diffusion
 - Bubble point
 - Pressure hold
 Same physics. Differs
 in which part of flow spectrum they examine.
- These tests should be preformed BEFORE and AFTER a filtration on membrane filters <1 micron.

Bubble point procedure

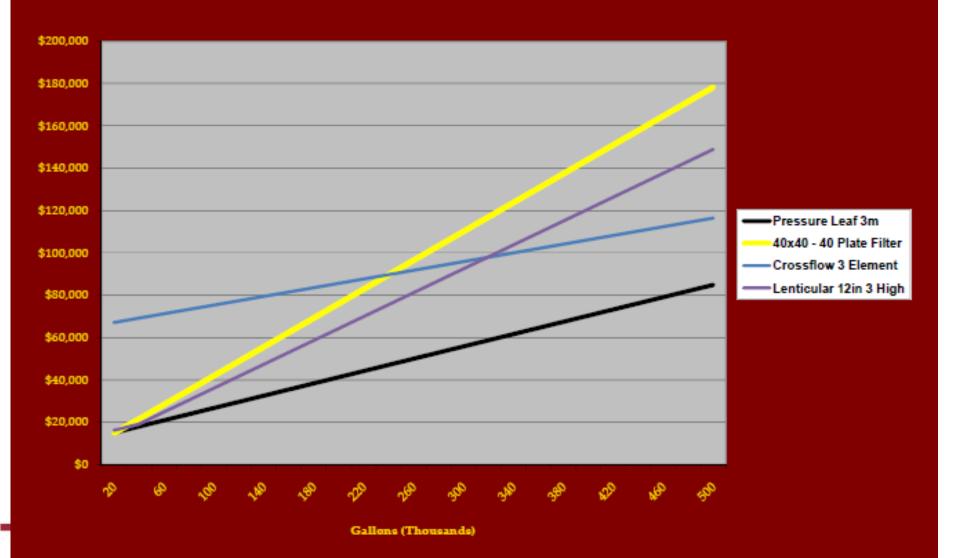
- See video at scottlabs.com
- Wet the filter with the appropriate fluid water.
- Pressurize the system to about 80% of the expected bubble point pressure which is stated in the manufacturer's literature.
 Slowly increase the pressure until rapid continuous bubbling is observed at the outlet.

Trouble shooting

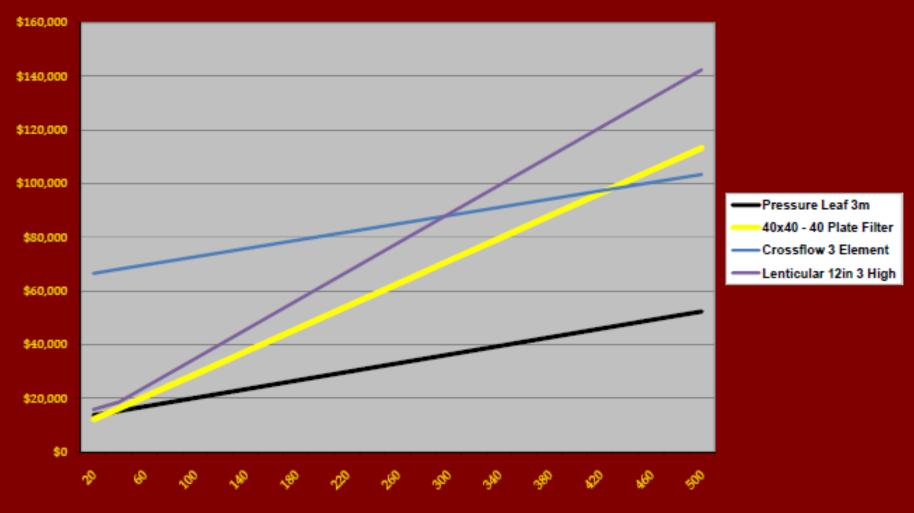
- If the bubble point value is lower than the specification then the following:
- Fluid with different surface tension than recommended test fluid. Gas choice?
- Integral filter but wrong pore size
- High temperature
- Incompletely wetted membrane
- Non integral membrane or seal.

Efficiency Tips - Cartridges

- REGENERATE AND STORE
 - Decrease expenses
 - Regenerate with KOH and store in EtOH (cheap vodka) or a pickle of Acid and SO2.
- If storing in SO2, remove gaskets
- In line Regeneration
 - Forward flushes of 130F
 - Backflush depth filters, but use hold-down or Code 7
- Do not wait more than 24 hours after "pre-filtration"
- Integrity test membranes BEFORE AND AFTER

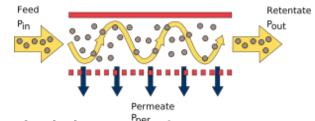

Cost Analysis

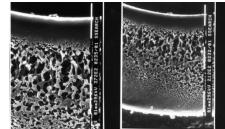
- Power
- Labor cost
- Media
- Capital
- Wine Loss


		Gallons M	Total Xflow Cost	Filter Time	Total PL Cost	Filter Time	Total PF Cost	Filter Time	Total PE Cost
Power Cost (kw/hr)	\$0.14	20							
Operator Wage	\$18.00	40	\$68.073.36	48.5	\$15,312	92.3	\$16,265	79.9	\$18,589
Wine Cost Per Gallon	\$12.00	60	\$69,610,04	70.1					\$23,967
		80	\$71,146,72	91.7	\$18,534	182.6	\$24,687	158.2	\$29,344
X Flow Elements	3	100	\$72,683.39	113.3					
X Flow Filtration Rate	300 gal/hr	120	\$74,220.07	134.8	\$21,756	272.9	\$33,109	236.5	\$40,099
X Flow Unit Cost	\$65,000	140	\$75,756.75	156.4	\$23,367	320.1	\$37,364	277.3	\$45,511
Replacement Element Cost	\$5,000	160	\$77,293.43	178.0	\$24,978	365.2	\$41,575	316.4	\$50,889
		180	\$78,830.11	199.6	\$26,589	410.4	\$45,786	355.6	\$56,266
Estimated Life of Elements	220,000 gal/elm	200	\$80,366.79	221.1	\$28,200	455.5	\$49,997	394.7	\$61,643
		220	\$81,903.47	242.7	\$29,811	500.7	\$54,208	433.9	\$67,021
Pressure Leaf Size	3 sq m	240	\$83,440.15	264.3	\$31,422	545.8	\$58,419	473.0	\$72,398
P.L. Filtration Rate	927 gal/hr	260	\$84,976.82	285.9	\$33,033	591.0	\$62,630	512.2	\$77,776
P.L. Cost	\$12,000	280	\$86,513.50	307.4	\$34,644	638.1	\$66,884	552.9	\$83,188
Filtration passes	1	300	\$88,050.18	329.0	\$36,255	683.3	\$71,095	592.1	\$88,565
		320	\$89,586.86	350.6	\$37,866	728.4	\$75,306	631.2	\$93,943
Plate and Frame Size	40 plates	340	\$91,123.54	372.2	\$39,477	773.6	\$79,517	670.4	\$99,320
40x40=40 60x60=60	40	360	\$92,660.22	393.7	\$41,088	818.7	\$83,728	709.5	\$104,698
Surface Area	6.4 sq m	380	\$94,196.90	415.3	\$42,699	863.9	\$87,939	748.7	\$110,075
Flow rate	1320 gal/hr	400	\$95,733.58	436.9	\$44,310	911.0	\$92,194	789.4	\$115,487
Plate and Frame Price	\$7,800	420	\$97,270.25	458.5	\$45,921	956.2	\$96,405	828.6	\$120,864
Filtration passes	2	440	\$98,806.93	480.0	\$47,532	1001.3	\$100,616	867.7	\$126,242
Gallon capacity per sq m	425	460	\$100,343.61	501.6	\$49,143	1046.5	\$104,827	906.9	\$131,619
		480	\$101,880.29	523.2	\$50,754	1091.6	\$109,038	946.0	\$136,997
Lenticular Filter Hieght (1-4)	3 high	500	\$103,416.97	544.8	\$52,365	1136.8	\$113,249	985.2	\$142,374
12" Diameter =12 16"=16	12	520	\$104,953.65	566.3	\$53,976	1181.9	\$117,460	1024.3	\$147,752
Surface area	5.4 sq m	540	\$106,490.33	587.9	\$55,587	1229.1	\$121,714	1065.1	\$153,164
Flow rate	1113.75 gal/hr	560	\$108,027.01	609.5	\$57,198	1274.2	\$125,925	1104.2	\$158,541
Plate and Frame Price	\$5,000	580	\$109,563.68	631.1	\$58,809	1319.4	\$130,136	1143.4	\$163,918
Filtration Passes	2	600							
Gallon capacity per sq m	531.25	620	\$112,637.04	674.2	\$62,031	1409.7	\$138,558	1221.7	\$174,673

\$25/GALLON SCENARIO

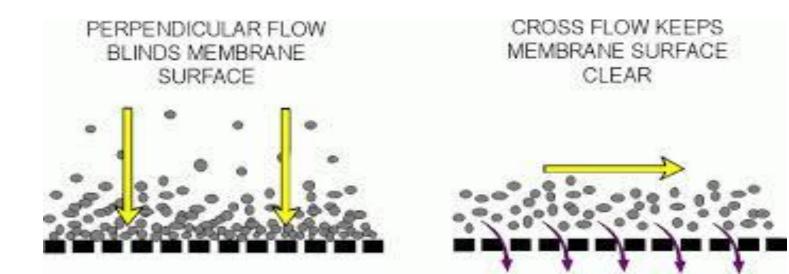
\$12/GALLON SCENARIO

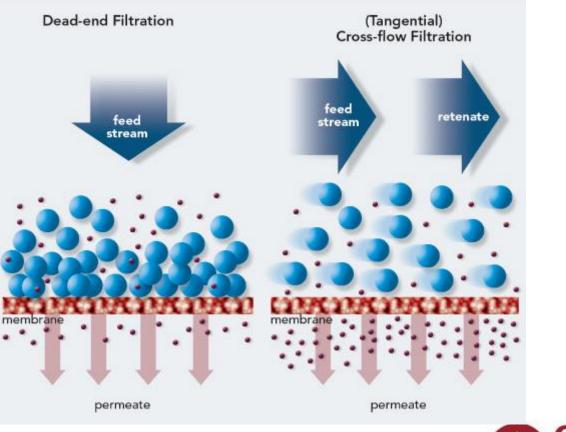



Gallons (Thousands)

Crossflow

- High Efficiency filtration of wide range of %solids wine
- Employs tangential flow which minimizes permanent fouling
- NOT STERILE FILTRATION
- PRO: Single stage; automation available; reduces handling; low disposal and wine loss
- Neutral: Media cost medium to high
- CON: Capital cost high; media is not indestructible; requires good training

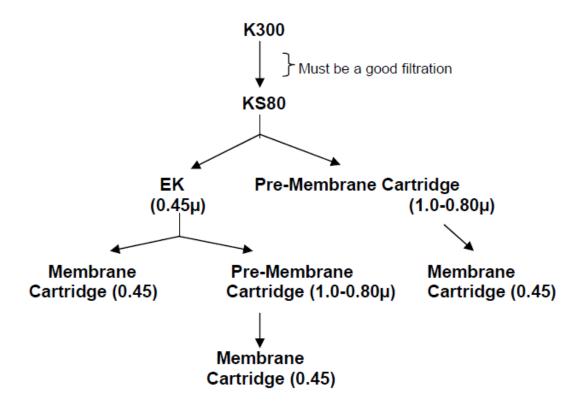




Crossflow membranes

Crossflow vs Depth filtration

Crossflow filter



Sample Filtration Strategies

Most Common Routes for Pad Filtration in Whites:

Record Keeping

- Maintain Notes
 - Date, Wine, Vintage
 - Where the wine is in process

- (i.e. after two rackings or stuck MLF)
- Record filter type; capacity; grade; operator
- Track original/terminal Differential Pressure (dP)
- Periodically record:
 - Gallons filtered
 - dP for each filter stage

Contacts

- Scott Laboratories Technical Group
 - 1-800-821-7254
 - 8 am -5 pm PST M-F
 - <u>www.scottlab.com</u>
 - Maria Peterson
 - Filtration Specialist
 - 707-765-6666
 - <u>mariap@scottlab.com</u>

