

Vineyard Nutrient Management

Hans Walter-Peterson Finger Lakes Grape Program October 29, 2013

- 5) Supplemental Fertilizers: Efficiency
- Shoots and Fruit:
 Demand and Measurement
- 3) Roots:

 Physical, Biological, and
 Chemical Differences
- 2) Soil Amendments: %OM, pH, Functional Depth
- 1) Soils: Character, Content, Variation

Questions

- How many nutrients do the vines lose every year?
- What levels of nutrients do the vines need to have?
- What does the soil already supply to the vines?
- How much do we need to supply, and how do we supply them?

Nutrient Loss

Amount of nutrients exported with fruit harvest at different cropping levels. Adapted from Mullins et al. (1992).

Crop level (ton/acre)											
	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6

10.2

2.0

17.3

3.5

0.7

11.7

2.2

19.8

4.0

8.0

13.1

2.5

22.2

4.5

0.9

14.6

2.8

24.7

5.0

1.0

16.1

3.1

27.2

5.5

17.5

3.4

29.6

6.0

1.2

Nutrients Removed (lbs.)

2.9

0.6

4.9

1.0

0.2

Ν

Р

K

Ca

Mg

4.4

8.0

7.4

1.5

0.3

5.8

1.1

9.9

2.0

0.4

Source: Low Input Viticulture and Enology (LIVE) Program Handbook

7.3

1.4

12.4

2.5

0.5

8.8

1.7

14.8

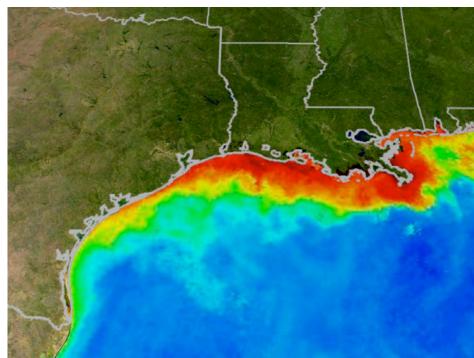
3.0

0.6

Element	Symbol	Pounds/Acre used by 3-year-old Concord				
Nitrogen	N	36.7				
Potassium	K	31.2				
Calcium	Ca	18.6				
Phosphorous	Р	7.2				
Magnesium	Mg	5.7				
Iron	Fe	0.7				
Boron	В	0.1				
Manganese	Mn	0.7				
Copper	Cu	0.7				
Zinc	Zn	0.2				

Source: LERGP G.R.a.P.E. Pages, http://lergp.org/year-planting/nutrient-management

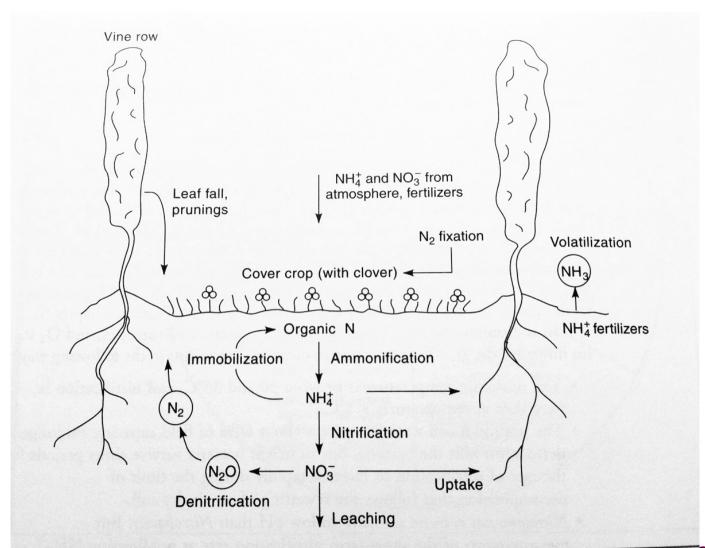
How much do they need?


"A little extra fertilizer is cheap insurance"

Source: Buffalo News, Sept. 10, 2013. http://www.buffalonews.com/city-region/environment/green-menace-of-toxic-algae-threatening-lake-erie-20130914

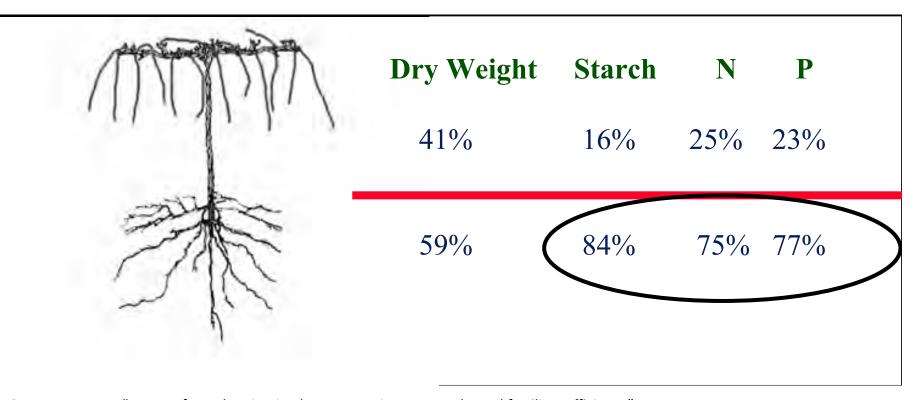
http://serc.carleton.edu/microbelife/topics/deadzone/index.html

Nutrient	Chemical symbol	Target values					
-		Soil	Bloom petiole	Late-summer petiole (70–100 days after bloom			
Total Nitrogen	N		1.296-2.296	0.8%-1.2%			
Phosphorus	P	20-50 ppm	0.17%-0.30%	0.14%-0.30%			
Potassium	K	75-100 ppm	1.5%-2.5%	1.2%-2.0%			
Calcium	Ca	500-2,000 ppm ^b	1.0%-3.0%	1.0%-2.0%			
Magnesium	Mg	100-250 ppm	0.3%-0.5%	0.35%-0.75%			
Boron B		0.3-2.0 ppm	25-50 ppm	25-50 ppm			
Iron	Fe 20 ppm 30–100 ppm		30-100 ppm	30-100 ppm			
Manganese	anganese Mn		25-1,000 ppm	100-1,500 ppm			
Copper Cu 0.		0.5 ppm	5-15 ppm	5-15 ppm			
Zinc Zn		2 ppm	30-60 ppm	30-60 ppm			
Molybdenum	Mo	_c	0.5 ppm	0.5 ppm			
Aluminum Al		< 100 ppm ^b					

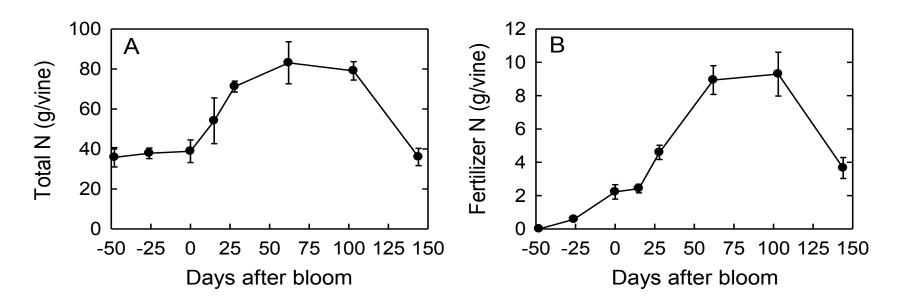

From: Bates, T and T. Wolf (2008). Nutrient Management. *Winegrape Production Guide for Eastern North America*, Tony Wolf (ed.).

What are the sources of nutrients?

- Soil
 - Mineralization of organic matter
 - Weatherization of minerals
- Biomass (e.g., cover crops, prunings)
- Vine reserves
 - Woody tissues
 - Older leaves
- Supplemented by grower



THE BIG DIG



Source: T. Bates, "Lessons from the Big Dig: dry matter, nitrogen uptake and fertilizer efficiency" http://grapesandwine.cals.cornell.edu/cals/grapesandwine/appellation-cornell/issue-14/big-dig.cfm

Mature Concord vines required 40 g of N/vine during the growing season.

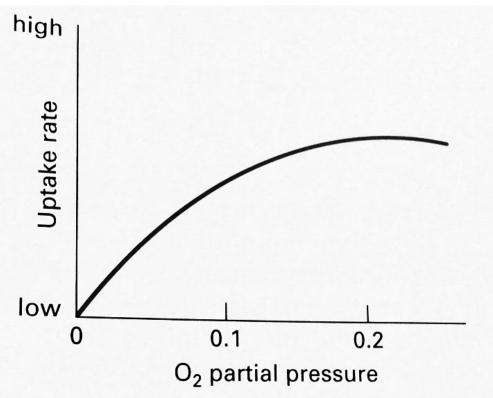
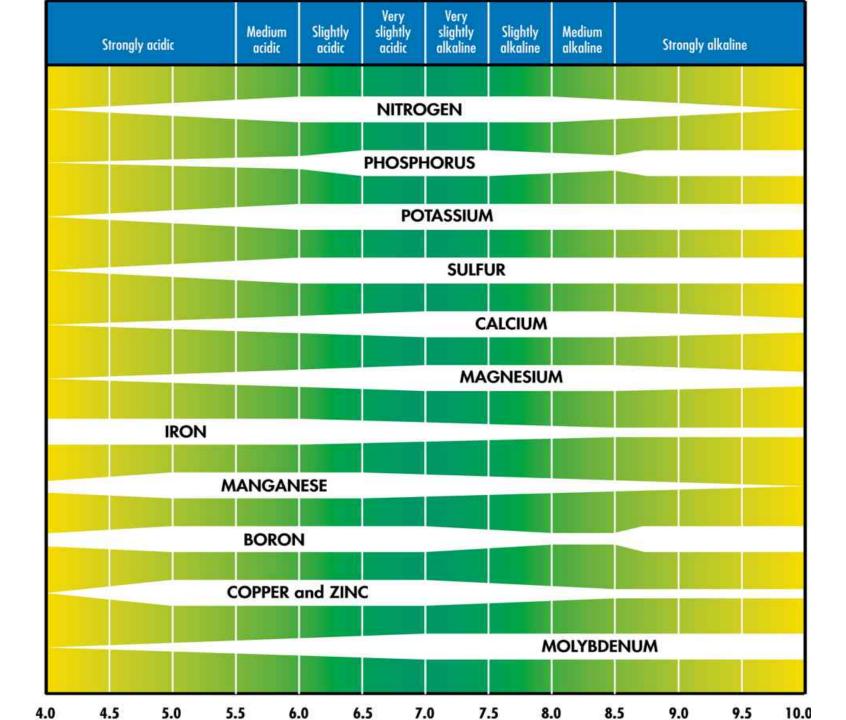
N fertilizer applied at budbreak supplied about 9 g/vine (22.5% of total N required).

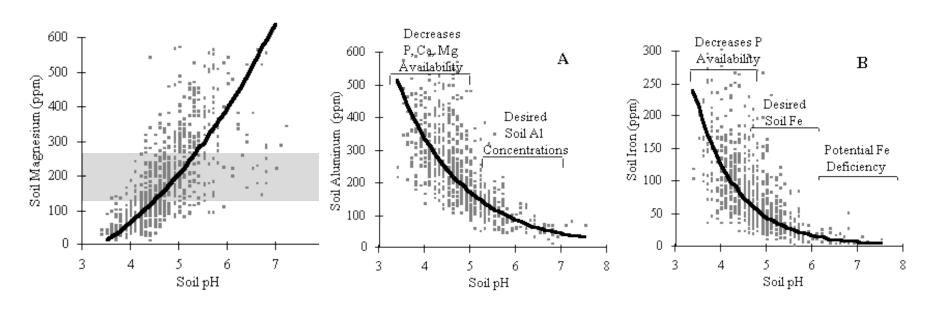
N Supply From Reserves

- Reserve N provides 15 to 30% of the total vine N demand.
- Reserve N is a main source for vine growth from budbreak to bloom

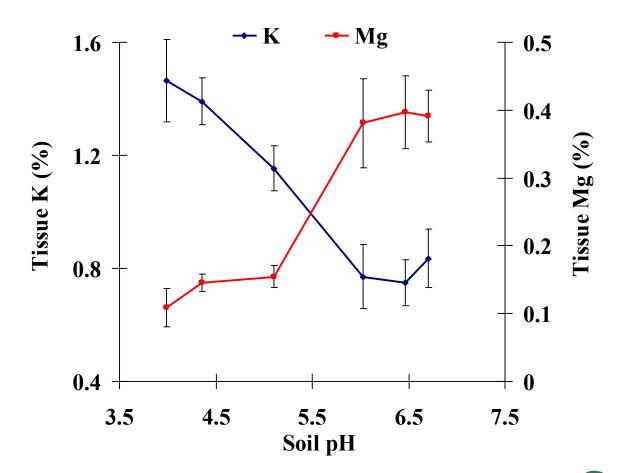
Factors that influence nutrient uptake

- Soil conditions
 - Compaction, saturation
 - -pH
- Soil moisture content
- Varieties & Rootstocks

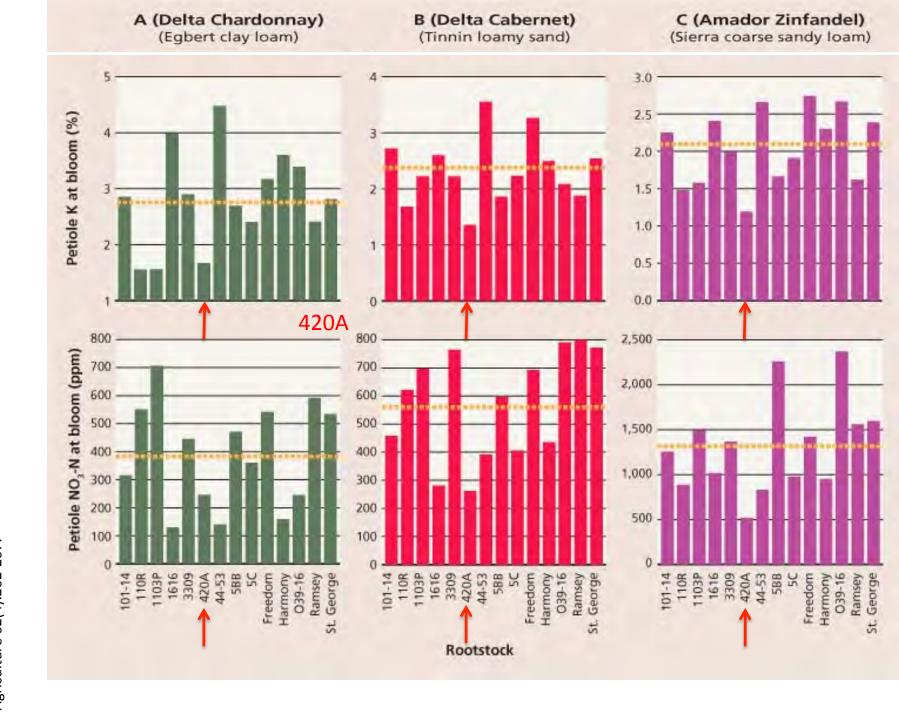




FIGURE 9–4 Rates of nutrient uptake as affected by temperature and oxygen supply.

Singer, M.J. and D.N. Munns. Soils: An Introduction.



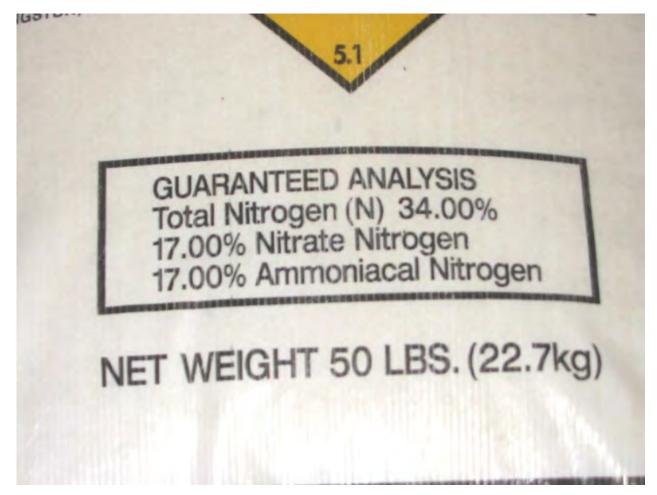
Influence of soil pH

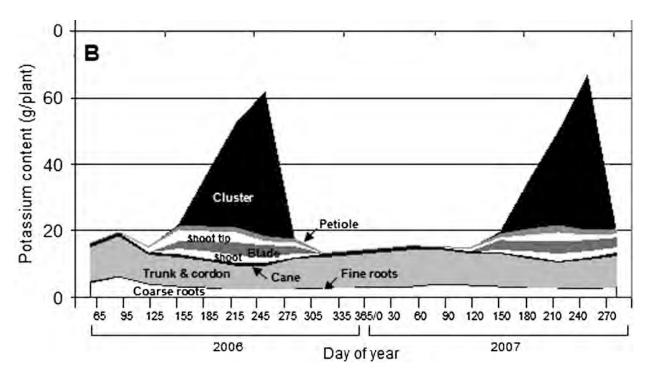

Source: T. Bates, "Concord Production Ten Commandments" (slide presentation), Lake Erie Regional Grape Growers Conference, March 2002.

Source: T. Bates, "Concord Production Ten Commandments" (slide presentation), Lake Erie Regional Grape Growers Conference, March 2002.

How much do I need to supply?

finger lakes grape program


Petiole and Soil Sampling



Nitrogen Requirements & Costs Worksheet for Concord Vineyards

		Sample (1)	Sample (2)	Sample (3)	Your Vineyard	Units
1	Soil Organic Matter (OM): Values can be obtained from soil test reports	2.30%	2.30%	2.30%		% OM
2	Pounds of N / % soil OM	20.0	20.0	20.0	20.0	lbs N/acre
3	Pounds of N/acre supplied by mineralization of OM (Line 1 x Line 2 x 100)	46.0	46.0	46.0		lbs N acre
4	Equivalent lbs N/acre required by Concord	50.0	50.0	50.0	50.0	lbs N/acre
5	Lbs N/acre required from supplemental fertilizer (line 4 - Line 3)	4.0	4.0	4.0		lbs N/acre
6	% N content of supplemental fertilizer	46%	46%	46%		% N
7	Lbs of fertilizer/acre to apply assuming 100% uptake (line 5 / (line 6)	8.7	8.7	10.0		lbs F/acre
8	Uptake efficiency of N: At budbreak .1; Two weeks post bloom .17	0.17	0.1	0.1		
9	Pounds of fertilizer per acre (line 7 / line 8)	51	87	100		lbs F/acre
10	Cost per ton of fertilizer	450	450	450		\$/ton
11	Cost per acre (Line 10 / 2000 x Line 9)	11.51	19.57	22.50		\$/acre

http://nygpadmin.cce.cornell.edu/pdf/submission/pdf26_pdf.pdf

Potassium Demand

Pradubsuk and Davenport. 2010. Seasonal Uptake and Partitioning of Macronutrients in Mature 'Concord' Grape. J. Amer. Soc. Hort. Sci. 135(5): 474–483.

Material	% K ₂ O		
Potassium chloride (muriate)	60		
Potassium sulfate	50		
Potassium magnesium sulfate (Sul-Po-Mag)	22 (11% Mg)		
Potassium nitrate	44		

Calculating K requirements

- 1) Tons/acre x 5 lbs K/ton of grapes = K removed by crop
- 2) K removed / % K_2O of fertilizer (decimal) = K fertilizer to replace loss

Example:

8 ton/acre crop x 5 lbs K/ton of grapes = 40 lbs/acre K lost to crop

40 lbs/acre / 0.60 (K_2 O content of muriate of potash) = 67 lbs/acre muriate to replace

Foliar fertilizers?

- Macronutrients
 - Hard to justify based on current knowledge (except Mg)
- Micronutrients
 - Supply what you need; nothing more
- Other impacts not measured by current sampling protocols?

Nutrients from Compost

- Slow Release
 - 1 to 5 years to release
 - Relies on microbial activity; less predictable nutrient release
- Testing
 - Compost/feedstocks
 - Soil
 - Petiole

Nitrogen from Compost

- Slowly released by microbial activity
- About 30% of total N (from analysis) available to vines
 - 15% in 1st year, 8% in 2nd, 4% in 3rd, 2% in 4th, 1% in 5th
- N Example
 - Total N: 15.8 lbs N/T (0.79%)
 - 15.8 lbs/T x 0.15 = 2.37 lbs N/T x 10 T/A = 23.7 lbs/A

Potassium from Compost

- Virtually all is released to soil
 - About 85% in 1st year, remainder in 2nd
- K can be high in compost made from pomace
 - Potential for Mg deficiency
 - High K linked to high pH in wines

Monitoring Nutrient Status

Supply monitoring

- Soil analysis
- Soil amendment analysis
- Fertilizer analysis

Demand monitoring

- Visual observations of plant condition
- Plant tissue analysis

- 5) Supplemental Fertilizers: Efficiency
- Shoots and Fruit:
 Demand and Measurement
- 3) Roots:

 Physical, Biological, and
 Chemical Differences
- 2) Soil Amendments: %OM, pH, Functional Depth
- Soils:
 Character, Content, Variation

