

REPLACING HERBICIDES WITH GROUNDCOVERS IN THE VINEYARD

Benjamin A. Loseke

Special Thanks to: Dr. Paul Read, Dr. Ellen Paparozzi, Dr. Erin Blankenship, Dr. Chuck Francis, Dr. Brian Wardlow, Steve Gamet, Eric Nelson, Scott Dvorak, Dave Stock and Mike Fritz

Benefits of using groundcovers in the vineyard

- Reduced herbicide usage
- Reduced erosion
- Increased soil fertility, water holding capacity and structure
- Reduced soil compaction
- Increased Biodiversity
- Regulate vine growth
- Improved air and water quality
- Nitrogen fixation

Project objectives

- How do 4 different groundcover mixes planted in the alleyways and in rows compete with newly planted vines for water?
- Do groundcovers established simultaneously with vineyard planting have negative effects on vine growth?
- What impact do groundcovers have on vine growth, bud break, fruit quality and wine quality?
- How quickly do the groundcovers establish?
- Can Infrared thermography (IRT) be used to assess grapevine water status using the crop water stress index (CWSI)?
- Will a thermal camera affordable to a grower be sensitive enough to measure water stress?
- Do beneficial insect populations increase as a result?

BEGINNING OF PROJECT

													Wate	r																						400'																			
	Trea	atmen	t1		Vestern Yarrow, Bridsfoot Trefoil, Dutch					Sourc	e		_																		Plant	Numbe	er																	ROV	'				
_	Trea	atmont	2	-	Hard Fe	SOUG	Clov Sheep E	/er Facou	a Sidaos	ate Gra	ma Bi	uffalor	ar acc		_		5	2 51	50 43	48	47 -	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 ;	32 31	30	29 28	3 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	8 7	6	54	3 2	4 I	1		
	i i e e	kinen			i laiui e	rscue,	oneepi	Blu	e, oldeoa Je Grama	is ura I	ina, Di	unaioj	grass,			54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	32 31	30	29 28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9	8 7	6	54	3 ;	2 1	2	Blo	ck 1
	Trea	atment	13	KY Bluegrass, White Clover, Red Fescue, Hard Fescue,																																																			
	Chewing Fescue, P Rye						_	54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 :	32 31	30	29 28	3 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	87	6	5 4	3 3	2 1	3		_								
	Trea	atment	(4				техока	a Bun	alograss					E	56 59	5 54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	32 31	30	28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9	8 7	6	54	3	2 1	4		_
	Trea	atment	t 5	Veed Free																																																			
													58	57 5	56 59	5 54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	32 31	30	29 28	3 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 8	87	6	54	3 7	2 1	5		
	Trea	atment	t 6		Co	ntrol	_	_		_			0 50	57 5	10 FI		E0 E	0 F1	50 44		47	10 15				10			20 2	5 34	22.4	12 . 24	20			20 25	24 2	0 00	- 21 - 4	0 10	10	17 10			10 1	1 10		0 7			-			Die	
	-	-		-	-		_					0	3 06	57 5	06 0	0 04	53 5	2 91	00 43	9 40	47 .	46 49	44	43 4	2 41	40	59 JC	, si	36 3	9 34	33 .	52 31	30	23 20	5 21	26 20	24 2	.3 22	21 4	20 19	10	17 16	10 1	+ I.3	12 1	1 10	3 1	• •	•	0 4	3 4			БЮ	* 2
											61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	32 31	30	29 28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9	87	6	54	3 (2 1	7		_
									~					F7 F					FO 44		47	40 45														~ ~							<i></i>												
									63	3 62	61	60 5	9 58	57 5	06 59	04	53 5	2 51	50 43	9 48	4/ •	46 45	44	43 4	2 41	40	59 38	5 37	36 3	5 34	33 .	52 31	30	29 28	3 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	8 7	6	5 4	3 2	4	8		
				-				65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	32 31	30	29 28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	87	6	54	3 /	2 1	9		
					_		66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	9 48	47 •	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 :	32 31	30	29 28	3 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	87	6	54	3 2	2 1	10	Bloc	:k 3
							67 66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 :	32 31	30	29 28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9	8 7	6	54	3 ;	2 1	11		
					69	68	67 66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 4	48	47 •	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 :	32 31	30	29 28	3 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	87	6	54	3 2	2 1	12		
				_	70 69	68	67 66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33	2 31	30	29 28	27	26 25	24 2	3 22	21 3	20 19	18	17 16	15 1	4 13	12 1	1 10	9	8 7	6	5 4	3	2 1	13		
							0. 00									1.				Ĩ		10 10						, , ,																					Ť	· ·					
			72	71	70 69	68	67 66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	32 31	30	29 28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	87	6	54	3 2	2 1	14	Bloc	:k 4
		73	72	71	70 69	68	67 66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	2 31	30	29 28	27	26 25	24 2	3 22	21 3	20 19	18	17 16	15 1	4 13	12 1	1 10	9 3	8 7	6	54	3	2 1	15		
							0. 00		0.00							, î				1.0		10 10																			Ĩ								Ť	· .	Ů.	· ·			
	75 74	4 73	72	71	70 69	68	67 66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 4	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 (32 31	30	29 28	3 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9 :	87	6	54	3 2	21	16		
70	75 7/	1 72	70	71	70 69	60	67 66	CE.	64 65	0 62	61	C0 E	0 50	57 F	ке в	5.54	E2 E	2 51	50 4	1 40	47	40 45		12 4	2 41	40	20 20	2 27	26 2	E 24	22 1	2 21	20	20 20	27	20 25	24 2	0 00	21 4	20 10	10	17 10	15 1	4 12	10 1	1 10		0 7	0	F 4		2 1	17		
10	10 11	+ ro	12	n	10 63	60	01 00	000	04 03	02	01	60 0	3 00	07 0	J6 J3	04	05 0	2 01	00 44	⁴⁰	41	40 40	44	+3 4	2 41	40	53 GC	, sr	30 3	0 34		2 31	30	23 20	0 21	20 20	24 2	.5 22	21 4	20 13	10	17 10	10 1	+ 10	12 1	1 10	3 .	o (°	J 4	° '	÷ '	- ¹⁷		
77 76	75 74	4 73	72	71	70 69	68	67 66	65	64 63	3 62	61	60 5	9 58	57 5	56 59	5 54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 3	32 31	30	29 28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9	87	6	54	3 7	2 1	18	Bloc	⇒k 5
77 70	75 7	4 70	70	71	70 00	00	07 00	OF	04 07		.01	CO E	0 50	57 5	10 FI		E0 E	0 F1	50 4		47	10 15				10				E 04	22.4	0 04	- 20		07	00 0E	01 0	0 00	- 24 - 4	0 40	10	17 10			10 1	1 10		0 7					10		
11 16	10 11	+ 73	72	r1	10 63	00	01 00	60	04 63	02	01	00 0	3 98	07 0	10 0	04	05 0	2 01	00 43	48	47 1	40 40	44	+3 4	2 91	40	30 30	-37	JO J	0 34	- 33 .	2 31	30	23 28	21	26 20	24 2	.5 22	21 6	19	18	17 16	10 1	+ 13	12 1	10	3 1	• /	°	0 4	° 4	· ']	13		
77 76	75 74	4 73	72	71	70 69	68	67 66	65	64 63	62	61	60 5	9 58	57 5	56 59	54	53 5	2 51	50 43	9 48	47	46 45	44	43 4	2 41	40	39 38	3 37	36 3	5 34	33 :	32 31	30	29 28	27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	4 13	12 1	1 10	9	87	6	5 4	3 (2 1	20		
77 70	75 7	. 70	70	71	70 00	00	67 60	OF	04 07	0.02		co =	0 50	57 5	10 F		E0 5	0 54	E0 44		47	10 15		10 4		40		2 27	20 2	F 04	22	10 04	- 20	20 20	27	20 25	24	0 00	21 /	10 10	10	17 10	15 4		10 4	1 10	0			F 4	2				_
11 16	75 74	4 73	72	n	70 69	68	67 66	65	64 63	5 62	61	60 5	9 58	07 5	56 5	54	53 5	2 51	50 43	9 48	4/	46 45	44	43 4	2 41	40	sə 38	5 37	36 3	o 34	33 3	52 31	30	29 28	5 27	26 25	24 2	3 22	21 2	20 19	18	17 16	15 1	• 13	12 1	1 10	9 3	5 7	6	o 4	3 2	4 1	21		
																												RO/	AD (18)																									

Vineyard establishment

Irrigation

Groundcover Planting

Germination

Establishment

- Treatment 1 Roadside Mix (Stock Seed Farms)
- Western Yarrow, Birdsfoot Trefoil, Dutch Clover

- Treatment 2 Custom Native Grass Mix
- Hard Fescue, Sheeps Fescue, Sideoats Grama, Buffalograss, Blue Grama

- Treatment 3 Vineyard/Orchard Mix (Stock Seed Farms)
- KY Bluegrass, White Clover, Red Fescue, Hard Fescue, Chewings Fescue, P Rye

- Treatment 4
- Texoka Buffalograss

Control

Natural Vegetation + Weed Free Strip Beneath Vines

Data Collected - 2014, 2015, 2016

- Soil Samples (all years)
- Groundcover Rate of Establishment (2014)
- Vine Length (2014)
- Pruning Weights (2015 & 2016)
- Leaf Water Potential, i.e. Plant Water Status (2015, 2016)
- Crop Water Stress Index (2015, 2016)
 - Leaf temperature
 - Irradiance
 - Ambient air temperature
 - Wind speed
 - Relative humidity
- Bud Break (2016)
- Harvest Data (2016)

RESULTS (DATA OVERLOAD)

Rate of GC establishment (2014)

Shoot Lengths (2014)

Pruning weights 2014 & 2015

Date of Bud Break (2016)

Julian Days until Bud Break

Water Competition Summer 2015

Mean Leaf Water Potential of all Reps on Each Collection Date

Water Competition Summer 2016

Mean Leaf Water Potential 07/06/2016

Mean Leaf Water Potential 08/01/2016

Mean Leaf Water Potential 07/12/2016

Mean Leaf Water Potential 08/10/2016

Harvest Results (2016)

Harvest Caveat: Estimated 50% Crop Loss from Herbicide Drift

Harvest Results (2016)

Infrared Thermography

- Idea: as plants begin to become water stressed their leaf temperature will increase as stomata close and transpiration slows
- Thermal cameras are able to detect this change
- Using the leaf temperature we can plug the values into the crop water stress index (CWSI) for a standard water stress level between 0 and 1

LWP and CWSI Correlation

https://www.youtube.com/watch?v=bqpAk30HDe4

Preliminary* Recommendations

- Results suggest planting groundcovers in year 2 after vines have had one year to establish
- Groundcovers should be taken care of as if they provided economic value to the vineyard (i.e. irrigation, fertilization, etc.)
- Native grass groundcovers appear to stress the vines the most
- Final Recommendation: TO ENHANCE VINEYARD SUSTAINABLITIY, PLANT SOMETHING!

Questions

