```
Volume Conversions:
1 mL= 0.035 fl oz
1 fl oz = 30 mL
1 L = 1000 mL
1 L = 0.2642 gal
1 gal = 3785 mL = 3.785 L
1 hL = 100 L = 26.4 gal
25 hL = 660 gal
1 L = 33.8 oz = 1000 mL
1 gal = 128 oz = 3785 mL = 3.78 L
1 qt = 32 oz = 946 mL = 0.946 L
1 pt = 16 oz = 473 mL = 0.473 = 0.473 L
1 cup = 8 oz=237 mL
    4 oz = 118 mL
    2 oz = 59 mL
    1 oz=29.57 mL
```


Weight Conversions:

$1 \mathrm{~g}=1000 \mathrm{mg}$
$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2 \mathrm{lb}$
$1 \mathrm{lb}=454 \mathrm{~g}=0.4536 \mathrm{~kg}$
$10 \mathrm{k}=22 \mathrm{lb}$
1 metric ton $=1000 \mathrm{~kg}$
1 metric ton $=2205 \mathrm{lb}$
1 US ton $=907 \mathrm{~kg}$
1 US ton $=2000 \mathrm{lb}$
$1 \mathrm{lb}=16 \mathrm{oz}$
$1 \mathrm{oz}=28.35 \mathrm{~g}$
$1 \mathrm{~g}=0.03572 \mathrm{oz}$

Equivalent Units:

$1 \mathrm{~g} / \mathrm{L}=0.10 \mathrm{~g} / 100 \mathrm{~mL}$
$=100 \mathrm{~g} / \mathrm{hL}$
$=100 \mathrm{mg} / 100 \mathrm{~mL}$
$=1000 \mathrm{mg} / \mathrm{L}$
$=1000 \mathrm{ppm}$
$=1.0 \mathrm{mg} / \mathrm{mL}$
$=0.1 \%(\mathrm{wt} / \mathrm{vol})$
$1 \mathrm{~g} / \mathrm{hL}=1 \mathrm{~g} / 26.42 \mathrm{ga}$
$=0.038 \mathrm{~g} / \mathrm{gal}$
$=0.084 \mathrm{lb} / 1000 \mathrm{gal}$

Other Useful Conversions:

$1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}$
$1{ }^{\circ}$ Brix $=1 \%$ sugar (wt/vol) 1 barrel $=60 \mathrm{gal}=227 \mathrm{~L}$
$1 \mathrm{lb} / 1000 \mathrm{gal}=454 \mathrm{~g} / 1000 \mathrm{gal}=120 \mathrm{mg} / \mathrm{L}=27.2 \mathrm{~g} /$ barrel $=.0120 \mathrm{~g} / \mathrm{L}$
$1 \mathrm{~kg} / \mathrm{hL}=1000 \mathrm{~g} / \mathrm{hL}=10,000 \mathrm{mg} / \mathrm{L}=2.271 \mathrm{~kg} / \mathrm{barrel}=10 \mathrm{~g} / \mathrm{L}$

Sulfur Dioxide and pH:

Table of molecular $\mathbf{S O}_{\mathbf{2}}$ concentration over $\mathbf{p H}$			
$\mathbf{p H}$	\% of Free Molfur Socular	ppm free for 0.8 Molecular	ppm free for 0.5 Molecular
2.90	7.5	11	7
2.95	6.6	12	7
3.00	6.1	13	8
3.05	5.3	15	9
3.10	4.9	16	10
3.15	4.3	19	12
3.20	3.9	21	13
3.25	3.4	23	15
3.30	3.1	26	16
3.35	2.7	29	18
3.40	2.5	32	20
3.45	2.2	37	23
3.50	2.0	40	25
3.55	1.8	46	29
3.60	1.6	50	31
3.65	1.4	57	36
3.70	1.3	63	39
3.75	1.1	72	45
3.80	1.0	79	49
3.85	0.9	91	57
3.90	0.8	99	62
3.95	0.7	114	71
4.00	0.7	125	78

Potassium Metabisulfite Additions:

```
Formula for PMBS addition:
(gallons of wine) x (3.785) x (ppm of addition) = grams of PMBS to add
    (1000) x (0.576)
3.785 is the conversion from gallons to liters
1000 converts \(\mathrm{mg} / \mathrm{L}(\mathrm{ppm})\) to \(\mathrm{g} / \mathrm{L}\)
0.576 is the fraction of \(\mathrm{SO}_{2}\) in PMBS
This formula can be simplified to:
(gallons of wine) x (ppm of addition) \(\mathrm{x}(0.0066)=\) grams of PMBS to add
```


Preparing a Strong 10\% Stock Solution:

Dissolve 10 grams of Potassium Metabisulfite into 100 mL of water. For additions of sulfite into large lots, use the information provided in the following table.

Must/Wine (gallons)	10\% Solution of Metabisulfite (Desired final SO_{2} concentration in ppm)						
	10	20	25	30	40	50	75
	(Add milliliters of 10\% solution)						
1	0.6	1.3	1.6	2.0	2.6	3.3	4.9
5	3.3	6.6	8.2	9.9	13.1	16.4	24.6
10	6.6	13.1	16.4	19.7	26.3	32.9	49.3
25	16.4	32.9	41.1	49.3	65.7	82.1	123.2
50	32.9	65.7	82.1	98.6	131.4	154.3	246.4

Preparing a Weak 3\% Stock Solution:

Dissolve 3 grams of Potassium Metabisulfite into 100 mL of water. For additions of sulfite into large lots, use the information provided in the following table.

$\begin{array}{c}\text { 3\% }\end{array}$					
Solution of Metabisulfite					
(Desired final	SO $_{2}$ concentration in ppm)				

